Off-shore Platform Glycol Dehydration

Adriatic Sea, Italy / 2015

Problem

Contamination entering a 3000-7000 L glycol reservoir from a 32 km pipeline had high levels of contamination as a result of pipeline corrosion. The contamination would degrade new glycol and reduce its ability to cool and remove moisture from gas. Corrosion of the carbon steel piping would cause contamination build-up during transmission and storage. The glycol system was unmanned and required a low maintenance filtration solution with minimal changeouts. During the dehydration phase, if the temperature of the glycol is volatile (this occurs when high levels of iron are present), the likelihood of vaporization loss increases, resulting in lost production.

Solution

Install a magnetic separator after the reservoir to improve glycol quality.

Spectroscopic Analysis (ppm)				
Iron	606			
Chromium	17			
Nickel	< 5			
Manganese	12			
Aluminum	93			
Lead	< 5			
Copper	24			
Tin	< 5			
Silver	< 5			
Titanium	5			
Silicon	410			
Sodium	26			
Potassium	130			
Vanadium	< 5			
Calcium	14			
Magnesium	64			
Phosphorous	779			
Zinc	30			
Barium	86			

Results

Analysis of contamination collected on the magnetic element showed 74% nonferrous particles and 26% ferrous. The glycol quality was significantly improved with minimal maintenance requirements.

RENOX Srl

ID Macchina:

P.ma Angelina - Residual on the OEI magnetic rod glycol circuit

Model:

Type of machine:

Residue solids (Single sample)

a residue analysis which requires İS characterisation. An allotment of the substance has been washed in heptanes and was immiscible. The residue was then vacuum filtered on a membrane and washed with water and observed under optical microscope (see attached pictures). For characterisation of the elemental composition of the residue a RDE spectrometry was carried out after filtration of the suspended residue in the heptanes with a porous disk electrode (Rotrode Filter Spectroscopy) and analysis with standard oil 0 ppm. The concentration reported is a semi-quantitative measure of the presence of the elements in the residue.

High presence of metals (Iron, with trace of aluminum, copper and chromium). Presence of contaminants non metallic and salts (phosphorus, silica and potassium). The particles are in the form of residues from a few microns to 0.5 mm.

3					Ing. Matteo Campatelli, 16 apr 2015
Oil GENERAL		Sample ID		6401EE (P3038)	
Section 1		Sample Date		n.p.	
Note:		Date Received		14 apr 2015	
		Additives			
			Threshol d values	٥	
ASTM D6595 mod. Rotrode Filter Spectroscopy	Iron			606	
	Chrome			17	
	Nickel			<5	
	Manganese			12	
	Aluminum			93	
	Lead			<5	
	Copper			24	
	Tin			<5	
	Silver			<5	
	Titanium			5	
	Silica			410	
	Sodium			26	
	Potassium			130	
	Vanadium			<5	
	Calcium			14	
	Magnesium			64	
	Phosphorous			779	
	Zinc			30	
	Barium			86	
	Boron			45	
	Molibdenum			<5	
	Cadmium			7	

Date 16 apr 2015, Resp. Laboratorio